EFFECT OF THE RIGIDITY OF THE STRATA COVERING
A WATER-BEARING LAYER ON THE REGULARITY
OF ELASTIC FILTRATION CONDITIONS

1. G. Kotov, V., A. Mironenko,
and L. I, Serdyukov

The article discusses the effect of the rigidity of the strata covering a water-bearing level
on the laws governing elastic filtration conditions during the process of test evacuations.
The problem reduces to solution of the equation for the sag of an infinite slab on an elastic
base. It is shown that the rigidity of the covering strata can be neglected only with a suf-
ficiently long duration of the evacuation; corresponding approximate criteria are given.

As is well known, the classical theory of elastic filtration conditions is based on the assumption of the
total transmission of a "depression load" to water-bearing rocks. Inother words, it is assumed that a de-
crease in the pressures S at any given point of the covering of the water-bearing stratum brings about an
increase in the effective pressure at this point by an amount yS(y is the volumetric weight of water). There
is no doubt with respect to the practical application of this postulation, under the condition that the dimen-
sions of the depression crater considerably exceed the total thickness of the rock coverings, M. However,
many filtration problems are solved for conditions when the diameter of the zone of the effect of evacuation,
2R, is commensurate with the value of M, or even less; this occurs, for example, when carrying out rel-
atively short-term evacuations from water-bearing strata, lying at considerable depths. Under such con-
ditions, it is evident that there will be a considerable "hanging" effect of the covering stratum; the pres-
sure on the water-bearing rocks (within the limits of the zone of the evacuation effect) from the side of the
covering rocks will be only partially transmitted, in view of the rigidity of the strata and of the limited di-
mensions of the depression crater. This fact has already been pointed out in a number of earlier published
articles [1, 2]. In particular, the authors of [2], proposing an arbitrary law for the transmission of the pres-
sure, note that the bending of the curves of the restoration of the level in their initial segments may be ex-
plained precisely by this incomplete transmission of the pressure during the first stages of evacuation.

In distinction from work carried out earlier, in the present article an attempt is made to make a real
evaluation of the effect of the "hanging® factor on elastic filtering conditions.

The problem is solved in a simplified statement. Around a borehole of radius r;, there is set up a
depression crater with a radius R; the depressions within the limits of the crater are described by the log~
arithmic dependence

In(R/r
S(r)y=25 hix((R //,0; (1)

Here 8; is the depression in the borehole; r is the instantaneous coordinate.

As a result of the lowering of the hydrostatic pressure, the shelf of covering rock tends to sag, so
that the excess effective pressure p,=yS(r) is transmittedto the water-bearing rocks from which the vacua-
tion is being carried out.
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The sagging is prevented by the forces of elastic resistance to the bending of the rocks covering the
shelf, and by the forces of elastic resistance from the side of the water-bearing stratum under compression.
In view of the limited scales of the deformations of the covering shelf, it is completely admissible to assume
that they obey the laws of the theory of elasticity.

In this statement, the problem is reduced to solution of the equation for the axisymmetric sag of an
infinite slab on an elastic base [3], which, with application to the conditions under consideration, may be
written in the following manner:

21 d 1
D(WjLTW) (z"+71')=pa (r) — AL(r) (2)
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Here ! is the deformation sagging of the covering rocks, or the compression deformation of the water-
bearing rocks; A is the coefficient of proportionality between the compression deformations of the water-
bearing rocks and their loading; ¢, a, and m are the porosity coefficient, the compressibility coefficient,
and the thickness of the water-bearing rocks; E and v are the Young modulus and the Poisson coefficient
(averaged) for the rocks of the covering shelf.

The general solution of this equation has the form [3]

= L‘on (P) -+ Cavy (o) + CSfu (P) -+ €48y (p) + Iy (p) (3)
O =0br, b= (/D"  U,(p) = ber (p)
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Here cj are integration constants; b is a reduction coefficient; /(o) is some partial solution of Eq. (2);
ker (o), kei(p), ber (p), bei(p) are Thomson functions [4].

For the partial case of a force, uniformly distributed around a circle with the reduced radius p = «,
the solution assumes the form [3]
Lo, @) = e Uo(@) Uo(e) — g0 (@) 20 ()] for p<a (4)
L(p, @) = 5 [Uo (@) fo (p) —0(@) o(@)] for p>a

where q is the intensify of the loading

In accordance with the law adopted in (1) for the distribution of the depression, S, the depression
loading (on a circle with the reduced radius p = @) is characterized by the intensity

L ) ln (p1/ @) po=bry
q(2)=po p = b =750mm, o1 = bR (5)

The total deformation from the whole depression loading can be obtained by integrating expression
(4) with respect to @ within the limits from p, to py, with an intensity, q, corresponding to formula (5)

a

l(p) = Wl%%?}) [fn ®) S alo(a) In (p1/a) doa—go (p) S avo(a) In (p1/a)dx
93 ” P ”
+ U, (p)S afo(2) In(pr/a)dr — vy (p)g age () In (p1/a) da.] (6)

To solve the integrals in expression (6), we use the relationships
S Uy (2} xdz = — 290" (z), Svo (z) e dz = zUy (z)

S fo(2)zdz = — zgy' (%), Sgo (z) zdz = zfo’ (2)
vofo’ + Uoge’ = Ud'go +vo’fo + 2/ iz
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At R >» 1y and ry— 0, the solution of (6) is brought

2 .
’\’ \ - to the form
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\ BN K / In particular, the deformation sagging at the
; > L./ 7, center (with p = 0) is
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In view of the fact that the pressure transmitted to the water-bearing stratum is equal to p; = Al,from
formula (8) it follows:

LY . n .

p(0) =————1D(R7,0) [ln PL— 5 g (px)] _

With an increase in py, the function gy(p;) — 0; therefore, complete transmission of the pressure at the
point r =0 can take place only at very large values of p; (when In p; «Inpy).

Figure 1 gives curves of the reduced pressures for p, =2 and p; =5,

n(R In(R
P =nEOTGE T, P =)

It is evident from Fig. 1 that, at p; =2, the actual pressure transmitted to the water-bearing stratum
differs sharply from the values of the pressure calculated on the assumption of complete transmission of
the depression loading. On the contrary, at p; =5, the actual and calculated pressures are sufficiently close
together within the limits of a considerable part (approximately 85%) of the area of the depression crater.

To evaluate the values of p; at which the effect of the incomplete transmission of the pressure on the
filtration process will be appreciable, we determine the quantity

R
2x 2nA a
oo =" norar =37\ 100

To Po

J
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7=2§ meyrar=5-{ mereds
T

0 Po
Taking account of (7), this quantity can be represented in the form

@ () =1 — @n/py) [fs {pr) Uo' (p1) — 8o (py) 20’ (1) — fo’ (D]

The quantity ¢ (o) obviously corresponds to the ratio of the volume of the elastic reservoirs being
evacuated, i.e., the actual and the calculated, with the usual assumption with respect to the complete trans-
mission of the depression loading. If it is assumed that the conductivity of the stratum is invariable, then

@ (1) = ao* [ a* = p* [po*

where a,* and p,* are the coefficient of piezoconductivity and the yield of water, determined without taking
account of the "hanging" factor; a* and u* are the same, but taking account of the "hanging™ factor. The
dependence ¢{o4) is shown in Fig. 2 (Curve 1).

Thus, the effect of the "hanging™ factor comes down, in the final analysis, to the fact that the coeffi-
cient of piezoconductivity is found to be a quantity depending on the dimensions of the zone of the evacuation
effect, and varying from k(1+ &) /yE,e (E, is the elastic modulus of water) to its limiting value a,* with a
sufficiently long duration of the evacuation.
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On the other hand, it can be shown that, with single evacuations, the zone from which more than 85%
of the elastic reserves of water come, is limited by the calculated radius

R({ty=2 Vit 9)

and if, in this case, the depression curve is approximated by the logarithmic law (1), the volumes of the
elastic reserves actually evacuated after a time t are found to be equal to the volume of a depression crater
with the above calculated radius.

Consequently, it may be postulated that, for the given problem, in all the above reduced relationships,
the quantity R is understood as a calculating parameter, determined by formula (9); therefore, the quantity
p} =b’R? is found to be directly proportional to the time t, sothat the function @(p;) (Fig. 2) can be equated
to some function of the time £ (t); £(t) =@ @b vay* 1).

Thus, for the conditions of the problem under consideration, it is possible to speak of the change in
the calculated value of the elastic water removal with time.

In view of this, it is apropos to draw an analogy between the problem under consideration and the
problem of filtration in water-bearing strata without pressure. As is well knwon, with relative short-term
evacuations, the calculated water removal, i1, from a pressureless water-bearing stratum is found to be a
quantity which depends essentially on the time; this dependence can be written in the form [5]

B ABy - (1”48

¥1= Bo T AiBy 4 AT (1 — 4B (e Br= consh (1)
Here t is the time; uj is the value of the water removal at t—=, Taking this circumstance into ac-

count, we shall attempt to approximate the curve in Fig, 2 by a formula of the type

Apr?— (1 — Ay 1y
Agpr? —= By (1 — 427

q):

At A, = 0.4 and B, = 0.6, the approximation is found to be sufficiently satisfactory (Fig. 2, curve 2),
From a comparison of (11) and (10) it follows that the case of filtration under consideration may, with a
certain amount of approximation, be approximated by relationships derived for pressureless filtration with
variable water removal [5]; in this case, the quantity Bt in (10) corresponds to the quantity p% in (11). While
in the case of pressureless filtration the change of the water removal with time may be neglected [5] only
with Byt >5-10, in the problem under consideration, the corresponding criterion has the form pj > 5-10* or

R m aE Y
w (1.2+-1.7 I:'—AT TFod =) ] (12)

Starting from expression (9), we can obtain a corresponding time criterion for a single evacuation,
with a constant output

ao*t m aE Y2
G > 4= Gy 13)

Consequently, all the calculating formulas for elastic filtration conditions may be used for the analysis
of test evacuations only when they are of sufficient duration. This fact, in particular, considerably restricts
the applicability of a number of express methods for study of the filtration parameters for sufficiently deep-
lying water-bearing strata.

Finally, the solution presented here describes the process of the transmission of pressure with a cer-
tain degree of approximation. In particular, it was assumed that the shelf of covering rock sags in accord-
ance with the theory of thin slabs which, generally speaking, is admissible [6] only with sufficiently large
values of py. Furthermore, definite errors in the criterion (13) are introduced by the assumption that the

*Since the difference between the values of P; and P, changes sign with an increase of p, at p} =5, the cal-
culated water removal already differs from the actual value by less than 25% (Fig. 2).
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quantity R varies in accordance with the law (9). Finally, it is important to bear in mind that, in actual
fact, the shelf of covering rock will sag, not in a manner similar to a solid slab, but as a stratified system;
under these circumstances, as a result of the presence of undrained pressure strata in this shelf, there
will be sagging of the water-bearing layer covering the water-bearing stratum being tested; this takes place
under the action of the difference in heads arising during evacuation.

All these factors are evidence of the fact that the formulas obtained above are constructed for con-
siderably simplified conditions. It must, however, be noted that, at the present-day level of the investiga~
tions, a more accurate statement of the problems under consideration would have no practical meaning
since, for this, in each actual stratum, before carrying out the evacuation there would be required reliable
data on the structure of the covering shelves and on the strength parameters of the rocks of which they are
made up. Therefore, here only a more modest problem has been posed: to make an evaluation, even if
only approximate, of the lower limit of the applicability of the generally accepted equations of elastic filtra-
tion conditions.

To evaluate the real quantities which, in practice, characterize the criteria (12) and (13), as an exam-~
ple, we shall consider a water-bearing stratum, the Buchak in the Yuzhno-Belozersk iron-ore deposit.
According to the results of investigations in the VNIMI [All-Union Scientific-Research Institute for Mine
Surveying], it is characterized by the following parameters: Ew~0.5+10% kg/em?; a =7-107% em?®/kg; £ = 0.7;
vy=0,4; m=15 m. Since M =250 m, from (12) we obtain

R 15.0.5.404.7-10 T,
o> 024D [T 0.16)] ~0.75t01.4

Consequently, in order that the results of a single evacuation, carried out from the Buchak
stratum, may be analyzed without taking the "hanging" factor into account, it is necessary, as a minimum,
that the radius of the depression crater exceed the thickness of the covering shelves,

If it is assumed that the ratio a/(1+ €) is of the same order of magnitude as the quantity E™! (this as-
sumption, as a rule will decrease the role of the "hanging" factor with evacuation from sandy water-bearing
strata), and that y = 0.3-0.4, we obtain the approximate extimates

% > (1.2 —1.7) (m ] M)y, %4':" > (0.40 — 0.70)(m [ MYz (14)
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